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Abstract

Durbin (1970) pre-tests of Ramsey optimal policy versus time-consistent pol-
icy rejects time-consistent policy and optimal simple rule for the U.S. Fed during
1960 to 2006, assuming the reference new-Keynesian Phillips curve transmission
mechanism with auto-correlated cost-push shock, including or not working capi-
tal. Estimates of a structural VAR shows that Ramsey optimal policy models the
persistence of in�ation, output gap and federal funds rate without requiring two
additional parameters for in�ation indexation and habit persistence. The number
of reduced form parameters is larger with Ramsey optimal policy than with time-
consistent policy although the number of structural parameters, including central
bank preferences, is the same. The new-Keynesian Phillips curve model is under-
identi�ed with Ramsey optimal policy (one identifying equation missing) and hence
under-identi�ed for time-consistent policy (three identifying equations missing).
JEL classi�cation numbers: C61, C62, E31, E52, E58.
Keywords: Ramsey optimal policy, Time-consistent policy, Identi�cation,
Central bank preferences, New-Keynesian Phillips curve.

1 Introduction

Can we pre-test if the Fed follows Ramsey optimal policy under quasi-commitment (De-
bortoli and Nunes (2014)) or a time-consistent policy (Cohen and Michel (1988), Oudiz
and Sachs (1985), Gali (2015) chapter 5)? Are the Fed�s preferences facing the same
identi�cation problem as Taylor rule parameters? Cochrane (2011) found that the simple
Taylor rule parameters are not identi�ed in new-Keynesian models including forward-
looking in�ation, but only the auto-correlation parameters of non-observable shocks.
Beginning with Simon (1956) certainty equivalence property of the linear quadratic

regulator, the quadratic loss function describing policy-maker�s preferences is used for
modelling stabilization policy (Duarte (2009)). It took more than two decades for the
estimation of Fed�s preferences to begin with Salemi (1995), using inverse control (Salemi
(2010)). Salemi (1995) took into account two structural breaks (1970-1, 1979-10) for three
monetary policy regime during the period 1947-1992 using monthly data. Salemi (1995)
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includes a careful investigation of identi�cation issues when the monetary policy trans-
mission mechanism is a backward-looking vector auto-regressive (VAR) model. These
identi�cation issues are the same for Ramsey optimal policy under quasi-commitment
(Debortoli and Nunes (2014)) with forward-looking variables, besides the optimal initial
jump anchoring forward-looking variables (Ljungqvist and Sargent (2012)).
Following Salemi (1995), there are around thirty papers estimating Fed�s preferences

since the 1960�s with a structural break since the 1980�s (Volcker-Greenspan period)
assuming in�ation is a predetermined variable or a forward-looking variable, assuming
the accelerationist Phillips curve or or new-Keynesian Phillips curve as a monetary policy
transmission mechanism: e.g. Cechetti and Ehrmann (2002), Ozlale (2003), Favero and
Rovelli (2003), Castelnuovo and Surico (2004), Castelnuovo (2006), Soderstrom et al.
(2005), Juillard et al. (2006), Salemi (2006), Kara (2007), Adjemian and Devulder (2011),
Adolfson et al. (2011), Ilbas (2012), Levieuge and Lucotte (2014), Paez-Farrell (2015),
Debortoli and Lakdawala (2016) and many others.
Contrasting estimations of Ramsey optimal policy with Oudiz and Sachs (1985) time-

consistent policy is recent (Givens (2012), Matthes (2015)). This paper highlights two
general theoretical issues when contrasting Ramsey optimal policy and time-consistent
policy. Distinct numbers of parameters can be identi�ed for each policy. Distinct numbers
of parameters are required by each policy to �t the auto-correlation of in�ation, output
gap and Federal funds rate.
Firstly, both policies has the same number of structural parameters. But there is a

smaller number of reduced form parameters for time-consistent policy with respect Ram-
sey optimal policy. The policy instrument and policy maker�s Lagrange multiplier are pre-
determined variables in Ramsey optimal policy under quasi-commitment (Debortoli and
Nunes (2014)). Policy instruments are forward-looking variables in time-consistent pol-
icy. According to Blanchard and Kahn�s (1980) determinacy condition, Ramsey optimal
policy has richer dynamics than time-consistent policy. It includes more predetermined
variables, more stable eigenvalues (bifurcation), more linearly independent variables in
its stable vector auto-regressive (VAR) representations and more reduced form parame-
ters which are elements of its larger size VAR matrix than time-consistent policy. For
example, if Ramsey optimal policy structural parameters are exactly identi�ed, they are
under-identi�ed for time-consistent policy.
Secondly, this paper highlights that, with respect to time-consistent policy, the richer

dynamics of Ramsey optimal policy implies a considerable advantage to model the persis-
tence of macroeconomic time-series. Ramsey optimal policy does not require additional
ad hoc exogenous auto-correlation parameters at least equal to 0:9 for in�ation indexation
or for consumption habit. By contrast, the auto-correlation of time-series is endogenously
changed by the negative-feedback mechanism of Ramsey optimal policy rule. Our idea is
to use a Durbin (1970) pre-test of the auto-correlation of disturbances for time-consistent
and for Ramsey optimal policy, in order to compare the misspeci�cation of persistence in
both models.
In order to limit the opacity related to the numerical approximations of optimal policy

in large scale models, we pre-test and test an explicit reference model with closed form
solution which is widely taught. It includes in�ation as a single policy target and the new-
Keynesian Phillips curve with an auto-regressive cost-push shock (Debortoli and Nunes
(2014), Gali (2015), chapter 5). We demonstrate that time-consistent policy is based
on positive-feedback mechanism and corresponds to optimal simple rules in this model
(proposition 1 and 2). Kollmann (2002) and (2008) is a precursor for optimal simple rules
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simulations in models including the new-Keynesian Phillips curve.
The closed form solution allows to check exactly the identi�cation of parameters. As

expected from the general case, three identifying equations are missing in time-consistent
policy and only one for Ramsey optimal policy (proposition 3). Only the auto-correlation
parameter of the non-observable cost-push shock can be identi�ed for time-consistent pol-
icy, but not the Fed�s preferences nor the slope of the Phillips curve. This is consistent
with Cochrane (2011) where the Taylor rule parameters are not identi�ed, but only the
auto-correlation parameter of the forcing variable. By contrast, the Fed�s preferences
(the relative cost of changing the policy instrument) and the slope of the new-Keynesian
Phillips curve can be identi�ed with Ramsey optimal policy if the Fed�s discount factor
is exogenously given. We propose an alternative estimation method for Ramsey optimal
policy, which avoids an identi�cation problem between the auto-correlation of the depen-
dent variable and auto-regressive disturbances (cost-push shock) (Feve, Matheron and
Poilly (2007), Griliches (1967), Blinder (1986), McManus et al. (1994)).
As expected from the general case, the time-consistent policy rule is misspeci�ed with

a very large auto-correlation of residuals (a strong rejection of Durbin (1970) pre-test),
whereas the auto-correlation of residuals is small in the case of Ramsey optimal policy.
Unconstrained VAR parameter estimates are very close to the values of reduced form
parameters computed from structural parameters estimates of Ramsey optimal policy,
with very close residuals. The in�ation equation of the VAR has identical estimates in
both cases, including the in�ation auto-correlation parameter. An additional in�ation
indexation parameter in the new-Keynesian Phillips curve is useless for Ramsey optimal
policy. In the policy instrument equation of the VAR, its auto-correlation parameter shifts
from an unconstrained estimate equal to 0:9 to a Ramsey optimal policy reduced form
estimate close to its maximal value (a unit root). Ramsey optimal policy predicts slightly
too much persistence of the policy instrument (here the output gap). An additional
consumption habit parameter in the Euler consumption equation is useless for Ramsey
optimal policy. The number of parameters of Ramsey optimal policy required to �t
the auto-correlation of output gap and in�ation is smaller than time-consistent policy.
Time-consistent policy with positive-feedback mechanism for stabilization policy requires
epicycles on epicycles to be saved to �t the auto-correlation of observed time-series, adding
two ad hoc parameters for in�ation indexation and consumption habit persistence.
In the test of Ramsey optimal policy, if the policy instrument is the output gap

(targeting rule), the relative weight of the output gap with respect to the weight of
in�ation (4 to 1) is very large, although not unheard of in previous estimations, and the
slope of the new-Keynesian Phillips curve is slightly too high. If the policy instrument
is the Federal funds rate, assuming labor cost is �nanced by working capital (Christiano,
Trabandt, Walentin (2014), Bratsiotis and Robinson (2016)), the relative weight on the
interest rate variance with respect to the weight of in�ation is plausible (1.2 to 1) in order
to avoid the zero lower bound and for modelling interest rate smoothing. The slope of
the new-Keynesian Phillips curve is also plausible.
We provide a Durbin (1970) pre-test on the reduced form of the Taylor rule for opti-

mal policy taking into account the Euler consumption equation with an auto-regressive
forcing variable in addition to the new-Keynesian Phillips curve (Giannoni and Woodford
(2003), Kara (2007)). Durbin (1970) pre-test rejects time-consistent policy with respect
to Ramsey optimal policy with quasi-commitment.
Section 2 presents issues on persistence and identi�cation in the general case. Section

3 presents our estimation methods of Ramsey optimal policy and time-consistent policy.
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Section 3 presents the bifurcation related to the shift from Ramsey policy to time con-
sistent policy, the null hypothesis of related the pre-test and its implementation on US
data during 1960-2006. Section 4 tests Ramsey optimal policy when output gap is the
policy instrument. Section 5 presents results when the Federal funds rate is the policy
instrument and in�ation is the policy target. Section 6 pretests in the case of two policy
targets (output gap and in�ation) with one policy instrument (Federal funds rate). The
last section concludes.

2 Persistence and Identi�cation Issues in the Gen-
eral Case

When inventing in�nite horizon time-consistent policies, Oudiz and Sachs (1985) and
Backus and Dri¢ l (1986) assumed that the number of stable eigenvalues for time-consistent
policy is exactly equal to the number of predetermined variables (ut) of the private sector.
By contrast, the number of stable eigenvalues for Ramsey optimal policy is equal to the
number of predetermined variables (ut) and forward looking variables (�t) of the private
sector. Each policies corresponds to a stable vector auto-regressive model of order one
(with matrix A) and of policy rules equations (with matrix F):

�
ut+1
�t+1

�
=

�
Auu Au�

A�u A��

��
ut
�t

�
: Ramsey optimal policy (1)

it = F��t + Fuut: Ramsey optimal policy rule (Sargent and Ljungqvist (2013))
(2)

ut+1 = Auuut: Time consistent policy, with �t = N�uut (3)

it = Fu;TCut: Time-consistent policy rule (4)

In the general case, when the transmission mechanism includes m forward-looking
variables and n backward-looking (predetermined) variables, determinacy for time-consistent
policy and simple rule implies exactly n stable eigenvalues, whereas Ramsey optimal pol-
icy implies exactly n+m stable eigenvalues. Shifting from time-consistent policy or simple
rule (with determinacy) to Ramsey optimal policy is a bifurcation where m eigenvalues
shift from instability to stability.
Firstly, for estimating the auto-correlation and cross-correlations of forward-looking

variables, the matrix A�� gives a considerable advantage to Ramsey optimal policy with
respect to time-consistent policy. The policy maker�s quasi-commitment anchors the
expectations of forward-looking variables of the private sector over time.
Secondly, the number of reduced form parameters (elements) of matrices A�� and F�

adds to the number of reduced form parameters of time-consistent policy in Auu, N�u

and Fu. The matrices A�u and N�u have the same number of reduced form parameters
(elements). If endogenous predetermined variables (the stocks of debt and capital) are
assumed to be zero at all periods, ut corresponds to exogenous auto-regressive forcing
variables, so that Au� = 0. However, the number of structural parameters corresponding
to the central bank preferences (weights in the loss function) and to structural parameters
of the equations of the private sector monetary policy transmission mechanism (new-
Keynesian Phillips curve, consumption Euler equation) are exactly the same in both
Ramsey optimal policy and time-consistent policy. As a consequence, only one of the two
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model can be at least exactly identi�ed.
For time-consistent policy, a parameter identi�cation problem occurs as soon as a

policy target or a policy instrument (the policy rule) is a linear function of more than
n variables of the model (hence with more than n parameters), where n is the number
of predetermined variable of the private sector. All variables are evolving in a stable
subspace of dimension n: they are exact linear combinations of n linearly independent
variables of the model. If one write the policy rule with more variables zt (which could
be lags of the policy instruments), these variables are necessarily a linear combination of
n linearly independent variables of the model, such as �t and ut. This is an identi�cation
restriction that should not be missed.

it = F��t + Fuut is observationally equivalent to: (5)

it = Fi�;z�t + Fiu;zut + Fizzt = Fi�;z�t + Fiu;zut + Fiz (Gz��t +Gzuut) (6)

it = (Fi�;z + FizGz�)�t + (Fiu;z + FizGzu)ut (7)

Then Fi�;z, Fiu;z and Fiz are not identi�ed. (8)

The failure of time-consistent policy to model persistence led to assume that lagged
values of forward-looking variables as additional predetermined variables which enters
into the dynamics of current forward-looking variables (�t = �t�1+Et (�t+1) +ut) with
additional persistence parameters . These are in�ation indexation and consumption
habit parameters, for example. The projection of forward-looking variables on predeter-
mined variables models the auto-correlation of forward-looking variables:

�t = N�t�1 (;Auu)�t�1 +N�u (;Auu)ut�1 (9)

This speci�cation faces Griliches (1969), Feve, Matheron, Poilly (2007) identi�cation
issue for modelling persistence when the parameters of the lagged dependent variable are
competing with the auto-correlation of the disturbances (ut). This identi�cation problem
is eliminated in assuming zero auto-correlation (Auu = 0) for predetermined variables so
that ut is white-noise (Clarida, Gali and Gertler (1999), section 6). In this case, Simon
(1956) certainty equivalence implies that the private sector and policy makers rule does
not depend on white noise disturbances.

�t = N�u ()�t�1 and it = Fu;TC ()�t�1 with �t�1 predetermined (10)

Time-consistent policy requires to add free exogenous persistence parameters  which
are not required by Ramsey optimal policy to obtain model the auto-correlation of
forward-looking variables, for an observationally equivalent model:

�t = A���t�1 and it = F��t (11)

Between observationally equivalent model, Ockham�s razor selects the model with
the lowest number of parameters, that is the model where free parameters are all set
to zero  = 0. For example, the micro-economic evidence for habit persistence is weak:
Havranek et al. (2017) meta-analysis of 597 estimates in 81 published studies found on
average 0:1 estimates in micro-level data and on average 0:6 for macroeconomic dynamic
stochastic general equilibrium model estimates. This micro/macro inconsistency is wor-
risome for macroeconomic models based on micro-economic theoretical foundations of
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consumer�s behaviour. In Duhem�s (1908) wording, adding free exogenous persistence
parameters ( 6= 0) may amount to add epicycles on epicycles to save the unlikely phe-
nomena of positive-feedback mechanism for stabilization policy, which is the hallmark of
in�nite horizon time-consistent policy.
Finally, if ut includes at least one endogenous controllable variables (such as public

debt) instead of only exogenous auto-regressive forcing variables, there is identi�cation
issue related to multiple equilibria similar to the �scal theory of the price level for time-
consistent policy. Oudiz and Sachs (1985) time-consistent algorithm will seek one among
several equilibria depending on its initial conditions. A model with two forward-looking
variables and two predetermined and controllable variables (public debt and private debt)
has six equilibria (the number of combinations for selecting two stable eigenvalues among
four controllable eigenvalues). By contrast, Ramsey optimal policy has a unique equilib-
rium taking into account endogenous controllable variables.

3 The Optimal Monetary Policy Problem

We follow exactly Gali�s (2015, chapter 5) reference model for Ramsey optimal policy
considers the case of an e¢ cient steady state. The welfare losses experienced by the
representative household are, up to a second-order approximation, proportional to:

v(�0; u0) = max
fxt;�tg

� 1
2
E0

(
+1X
t=0

�t
�
�2t + �xx

2
t

�)
(12)

where xt represents the welfare-relevant output gap, i.e. the deviation between (log)
output and its e¢ cient level. �t denotes the rate of in�ation between periods t� 1 and t.
ut denotes a cost-push shock. � denotes the discount factor. Et denotes the expectation
operator. v(�0; u0) denotes the optimal value function. Coe¢ cient �x > 0 represents
the weight of the �uctuations of the marginal cost of the �rm (measured by the output
gap) relative to in�ation in the loss function. Coe¢ cient �x > 0 is the relative cost of
the changing the policy instrument with respect to the costs of �uctuations of the policy
target, which is in�ation. It is given by �x = �

"
where � is the coe¢ cient on the marginal

cost of the �rm xt in the New Keynesian Phillips curve, and " is the representative
household�s elasticity of substitution between each di¤erentiated goods. More generally,
and stepping beyond the welfare-theoretic justi�cation for (1), one can interpret �x as
the weight attached by the central bank to deviations of output from its e¢ cient level
(relative to price stability) in its own loss function, which does not necessarily have to
coincide with the household�s.
The reference new-Keynesian Phillips curve is the monetary policy transmission mech-

anism:

�t = �Et [�t+1] + �xt + ut where � > 0, 0 < � < 1 (13)

The reduced-form parameter (denoted �) of the slope of the new-Keynesian Phillips
curve relates in�ation to marginal cost or to the output gap. It depends on four structural
parameters: the representative household discount factor �, the household�s elasticity of
substitution between each di¤erentiated goods ", the measure of decreasing returns to
scale of labor in the production functions of the �rms �, and the proportion of �rms who
do not reset their price each period � (Gali (2015), chapter 3):
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� (�; "; �; �) =
(1� �) (1� ��)

�

(1� �)

(1� � + �")
:

Econometricians estimate the slope � and may estimate the discount factor �. But
three parameters ("; �; �) face an under-identi�cation problem. An in�nite number of
values of ("; �; �) lead to an observationally equivalent given estimate of b�. Hence " is
not identi�ed and welfare preferences �x = �

"
are not identi�ed with respect to observa-

tionally distinct Fed�s preferences �x 6= �
"
. One may assume arbitrarily an identi�cation

restriction for the elasticity of substitution " that the Fed�s preferences are identical to
the household�s preferences �x = �

"
. The welfare preferences �x = �

"
is a useful theory for

normative economics. But it is a useless under-identi�ed model for positive economics
(Chatelain and Ralf (2017)).
Christiano, Trabandt and Walentin (2010) introduce a working capital hypothesis,

where labor cost is �nance by working capital. This is a simple way to include the cost of
capital in the new-Keynesian Phillips curve, knowing that in the reference new-Keynesian
model, labor (and not capital) is the only input in the production function. The marginal
cost in the new-Keynesian Phillips curve is then a linear combination of labor and capital
cost (Christiano, Trabandt and Walentin (2010), equation 35):

 (1 + �)xt +
 

(1�  ) � +  
it (14)

We estimate the two polar cases. When material inputs are not used in production
( = 1) and when no labor cost is �nanced by working capital ( = 0), the cost of labor
is the only cost taken into account and the output gap is the policy instrument. When
material inputs are all used in production ( = 0) and when all labor cost is �nanced by
working capital ( = 1), the cost of capital is the only cost taken into account and the
Federal funds rate is the policy instrument.
The central bank minimizes (1) subject to the sequence of constraints given by (2).

The cost push shock ut includes an exogenous auto-regressive component:

ut = �ut�1 + "u;t where 0 < � < 1 and "u;t i.i.d. normal N
�
0; �2u

�
(15)

where � denotes the auto-correlation parameter and "t is identically and independently
distributed (i.i.d.) according to a normal distribution with constant variance �2u.
The assumption of a non-observable auto-regressive exogenous forcing variable is fac-

ing Romer�s (2016) critique. It is not a necessary assumption for Ramsey optimal policy
(Sargent and Ljunqvist (2012), chapter 15). Assuming that predetermined variables are
only non-observable auto-regressive exogenous forcing variables allows to avoid multiple
equilibrium for time-consistent policy, such as the �scal theory of the price level (Leeper
(1991)). In our estimations, it constrains the eigenvalues of the stable VAR to be real.
Whenever the unconstrained VAR includes two complex conjugate eigenvalues, the max-
imum likelihood of the structural VAR of Ramsey optimal policy does not converge with
the assumption of the auto-regressive parameter � to be a real number.
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3.1 Ramsey Optimal Policy with Quasi-Commitment

3.1.1 Solution using Lagrange Multipliers

A policy maker with a mandate for a new policy regime revised on date t = 0 (corre-
sponding to a structural break in econometrics) commits to Ramsey optimal policy from
the current date until a given known date T where the optimal policy is optimized again
(Debortoli and Nunes (2014), appendix 4). The duration T of commitment ranges from
the duration between each Federal open market committee meetings (eight times a year)
up to the four years mandate of the chairman of the Fed or up to ten to twenty years of
a stable monetary policy regime.
The policy maker could also re-optimize on each future period with exogenous prob-

ability ("stochastic replanning" (Roberds, 1987), "quasi commitment" (Schaumburg and
Tambalotti, 2007; Kara 2007) or "loose commitment" (Debortoli and Nunes, 2014)). This
assumption is observationally equivalent to Chari and Kehoe (1990) optimal policy under
sustainable plans facing a punishment threat at a given horizon in case of deviation of
an optimal plan (Fujiwara, Kam, Sunakawa (2016)).
Ramsey optimal policy can be solved directly using Bellman�s equation, substituting

the law of motion of the economy into the policy-maker�s loss function without Lagrange
multipliers. With the Lagrange intermediate computations, the Lagrangian of Ramsey
optimal policy includes a sequence of Lagrange multipliers t+1.

L = �E0
t=TX
t=0

�t
�
1

2

�
�2t + �xx

2
t

�
+ t+1 (�t � �xt � ��t+1)

�
(16)

The law of iterated expectations has been used to eliminate the condition expectations
that appeared in each constraint. Because of the certainty equivalence principle for
determining optimal policy in the linear quadratic regulator including additive normal
random shocks (Simon (1956)), the expectations of random variables ut are set to zero
and do not appear in the Lagrangian.
The program includes given initial u0 and �nal boundary conditions for the predeter-

mined forcing variable variable lim
t!+1

�tut = 0. It also includes optimal initial and �nal

boundary values of the forward-looking variable in�ation. These transversality conditions
minimize the optimal value of the central bank�s loss function at the initial and the �nal
date:

@v(�t; ut)

@�t
= 0 = �tt predetermined for t = f0; Tg , �t = ��t for t = f0; Tg

(17)

lim
T!+1

@v(�T ; uT )

@�T
= 0 = lim

T!+1
�TT , lim

t!+1
�T = lim

t!+1
��T if T ! +1 (18)

In this paper, the estimated regimes last between 78 to 108 quarters, which may be
considered as a long horizon. We follow Gali (2015) and we consider the limit case where
the revision for a new policy regime happens in the in�nite horizon. Di¤erentiating the
Lagrangian with respect to the policy instrument (output gap xt) and to the policy target
(in�ation �t) yields the �rst order optimality conditions:
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@L
@xt

= 0) �xxt � �t+1 = 0 (19)

@L
@�t

= 0) �t + t+1 � t = 0 (20)

0 = 0) x�1 = �
�

�x
0 = 0 and �0 = �1 = �

�

�x
x0 (21)

that must hold for t = 1; 2; ::: The natural boundary condition 0 = 0 minimizes the
loss function with respect to in�ation at the initial date. It predetermines the policy
instrument which allows to anchor the forward-looking policy target (in�ation). The
in�ation Euler equation corresponding to period 0 is not an e¤ective constraint for the
central bank choosing its optimal plan in period 0. The former commitment to the value
of the policy instrument of the previous period x�1 is not an e¤ective constraint. The
policy instrument is predetermined at the value zero x�1 = 0 at the period preceding the
commitment.
Combining the two optimality conditions to eliminate the Lagrange multipliers yields

the optimal initial anchor of forward in�ation �0 on the predetermined policy instrument
x0:

�0 = �
�x
�
x0 (22)

and the central bank�s Euler equation for the periods following period 0, for t =
1; 2; 3:::

xt = xt�1 �
�

�x
�t: (23)

The central bank�s Euler equation links recursively the future or current value of
central bank�s policy instrument xt to its current or past value xt�1, because of the
central bank�s relative cost of changing her policy instrument is strictly positive �x > 0.
This non-stationary Euler equation adds an unstable eigenvalue in the central bank�s
Hamiltonian system including three laws of motion of one forward variable (in�ation �t)
and of two predetermined variables (ut; xt) or (ut; t).
Ljungqvist and Sargent (2012, chapter 19) seek the stationary equilibrium process us-

ing the augmented discounted linear quadratic regulator (ADLQR) solution of the Hamil-
tonian system (Anderson, Hansen, McGrattan and Sargent (1996)) as an intermediate
step. Using the method of undetermined coe¢ cients, this solution seeks optimal negative-
feedback rule parameters FR=(F�;R; Fu;R) function of structural parameters (�x; �; �; �)
satisfying the in�nite horizon transversality conditions. The policy instrument should be
exactly correlated with private sectors variables:

xt = F�;R (�x; �; �)�t + Fu;R (�x; �; �; �)ut: (24)

Ljungqvist and Sargent (2012, chapter 19) �rst step basis vectors (�t; ut) of the stable
subspace or Ljungqvist and Sargent (2012, chapter 19) �nal step basis vectors (t; ut) or
Gali�s (2015, chapter 5) basis vectors (xt; ut) include the non-observable predetermined
cost-push shock ut in their VAR(1). How to derive one representation from the other is
described in the appendix.
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3.1.2 Circumventing Feve, Matheron, Poilly (2007) identi�cation issue

A risky estimation strategy is to write in the likelihood the new-Keynesian Phillips curve
with auto-correlated disturbances and the Gali (2015) representation of the optimal policy
rule with the same auto-correlated disturbances. In this case, each of these equations
face Feve, Matheron and Poilly (2007), Griliches (1967), Blinder (1986), McManus et al.
(1994) identi�cation issue, where auto-correlated disturbances are competing to model
persistence with the lag of the dependent variable.
We eliminate the non-observable auto-correlated cost-push shock using the optimal

policy rule. The auto-correlation coe¢ cient then is into the VAR matrix of in�ation and
the policy instrument. It does no longer appear into the disturbances, which are now
white noise. We using the basis vectors (�t; xt) of the stable subspace for the VAR(1)
representation within the Hamiltonian system, using the mathematical equivalence of
systems of equations for t = 1; 2; 3::: :

(H)

8>><>>:
�
�t+1
ut+1

�
= (A+BFR)

�
�t
ut

�
+

�
0
1

�
"t

xt = F�;R�t + Fu;Rut
�0 = ��x

�
x0 and u0 given

,

8>><>>:
�
�t+1
xt+1

�
=M�1 (A+BF)M

�
�t
xt

�
+M�1

�
0
1

�
"t

ut =
1

Fu;R
xt � F�;R

Fu;R
�t

�0 = ��x
�
x0 and u0 given

(25)

with:

A+BFR=

�
1
�
� �

�
F�;R � 1

�
� �

�
Fu;R

0 �

�
�
�t
xt

�
=M�1

�
�t
ut

�
withM�1 =

�
1 0

Fu;R F�;R

�
Fu;R is eliminated using� 1

�
��
�
Fu;R = (1� �)�R

Fu;R
F�;R

and F�;R = �R
1��R

�
�x
(see appendix

1):

M�1 (A+BF)M =

�
��R (1� �)�R

1
F�;R

� (�R � 1)F�;R �+ (1� �)�R

�
=

�
��R (1� �) (1� �R)

�x
�

���R �
�x

�+ (1� �)�R

�
with:

�R

�
�
�
; �x
+
; �
�

�
=
1� �F�

�
=
1

2

�
1 +

1

�
+

�2

��x

�
�

s
1

4

�
1 +

1

�
+

�2

��x

�2
� 1

�
= �

where the two invariant stable eigenvalues of the stable subspace are �R denoted � by
Gali (2015) and � (appendix 2).
Structural parameters are estimated with feasible generalized non-linear least squares

10



for a system of equations. Theory-based constraints on the four reduced form parameters
of the matrix M�1 (A+BF)M imply that only three structural parameters can be
identi�ed: �,�R, F�;R or �,�R, �x

�
or �, � (�) ; � (�) for a given value of the discount

factor �:

� (�) =
1� �R�

F�;R
) �x (�) =

�
�R

1� �R

�
1

F�;R
� (�) : (26)

If initial values of in�ation and of the policy instrument (in deviation from their equi-
librium values) were perfectly measured at the date of commitment, the ratio �x

�
would

be over-identi�ed by the optimal initial anchor of forward in�ation on the predetermined
policy instrument equation:

�x
�
=
��0
x0

: (27)

The semi-reduced form cost-push shock rule parameter Fu;R requires an identi�cation
restriction, for example, setting a value for � (see appendix 2):

Fu;R (�) =
�1

1� ���R
F�;R < 0: (28)

The standard error �u of cost-push shock is computed using the standard error of
residuals �";x of the output gap rule equation in the VAR(1). It requires an identi�cation
restriction, because it depends on Fu;R:

�u (�) =
�";x

Fu;R (�)
: (29)

The standard error of the measurement of the in�ation equation �� (which is theo-
retically predicted to be zero) and its covariance with the cost push shock �x� = Fu;R�xu
are also available.
One identifying equation is missing in order to identify the remaining four structural

parameters (�x; �; �; �u) and the negative feedback rule parameter Fu;R. We set an iden-
ti�cation restriction on the discount factor to a given value: � = 0:99 or � = 1 in the
estimations.

3.2 In�nite Horizon Time-Consistent Policy

Cohen and Michel (1988), Oudiz and Sachs (1985) and Backus and Dri¢ ll (1986) invented
an in�nite horizon time-consistent policy, which holds if the policy maker optimizes at
all periods. Time-consistent policy is applied by Gali (2015) using the new-Keynesian
Phillips curve transmission mechanism with a very minor change with respect to Cohen
and Michel (1988) and Oudiz and Sachs (1985) detailed in the appendix. The central
bank minimizes its loss function subject to the new-Keynesian Phillips curve and subject
to two additional constraints. These constraints forces the marginal value of the loss
function with respect to in�ation (the policy maker�s Lagrange multiplier on in�ation)
to stick to the value zero at all periods. Hence, this rule does not change if the policy
maker optimizes at the initial date or at any future date.
These constraints assume that both the private sector and the central bank commit

for ever to restricted policy rules where their policy instrument reacts only to the con-
temporary predetermined variable ut at all periods t, with a perfect correlation. These
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time-consistent rules are determined by time-invariant rule parameters NTC and Fu;TC
to be optimally chosen for all periods, assuming common and complete knowledge of
structural parameters including preferences of both agents:

�t = NTCut and xt = Fu;TCut (30)

The central bank policy time-consistent rule has a representation where its policy
instruments responds only to current in�ation, after substitution of private sector time-
consistent rule:

xt = Fu;TCut = F�;TC�t with F�;TC =
Fu;TC
NTC

(31)

The Central Bank commits for ever to a restricted time-consistent rule where the
policy instrument responds only to current in�ation or only to the current non-observable
cost-push shock with a perfect correlation.
Substituting the private sector�s in�ation rule and the policy rule in the loss function:

max
f�;xtg

� 1
2
E0

+1X
t=0

�t
�
�2t + �xx

2
t

�
= max
fFu;TC ;NTCg

� 1
2

�
N2
TC + �xF

2
u;TC

� u20
1� ��2

The central bank �rst order condition is:

0 = Nu;TC
@Nu;TC

@Fu;TC
+ �xFu;TC

F�;TC =
Fu;TC
NTC

= � 1

�x

@Nu;TC

@Fu;TC

Substituting the private sector�s in�ation rule and the policy rule in the in�ation law
of motion leads to the following relation between NTC on date t, NTC;t+1 and Fu;TC :

�t = �Et [�t+1] + �xt + ut )
NTCut = �NTC;t+1�ut + �Fu;TCut + ut

NTC = ��NTC;t+1 + �Fu;TC + 1

In the reference Oudiz and Sachs�(1985) dynamic Nash equilibrium, the central bank
foresees that NTC;t+1 = NTC in its optimization (see appendix):

NTC =
�Fu;TC + 1

1� ��
=
�F�;TCNTC + 1

1� ��
) @Nu;TC

@Fu;TC
=

�

1� ��

The endogenous rule parameters are increasing function of the central bank cost of
changing the policy instrument �x. They are bounded by limit values of �x 2 ]0;+1[:
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0 <
�t;TC
ut

= NTC(�x)
+

=
�x (1� ��)

�x (1� ��)2 + �2
< N =

1

1� ��

�1
�
<
xt;TC
ut

= Fu;TC(�x)
+

=
��

�x (1� ��)2 + �2
< 0

�1 <
xt;TC
�t;TC

= F�;TC(�x)
+

=
Fu;TC
NTC

=
��

�x (1� ��)
<
��
�x

< 0

For an in�nite cost of changing the policy instrument �x ! +1, we label this
equilibrium as "laissez-faire" because two policy rule parameters are both equal to zero
F�;TC = 0 = Fu;TC . The policy instrument xt is set to zero at all dates: it is eliminated in
the model. It corresponds to the maximal initial response of in�ation (in absolute values)
to cost-push shock Nut = 1

1���ut for time-consistent policy.
For the limit case of a zero cost of changing the policy instrument (�x ! 0), the

policy instrument (output gap) has its largest response to cost-push shock x0 = � 1
�
u0 so

that the policy target (in�ation) does not respond to the cost-push shock (NTC is zero).
The policy instrument (the output gap) xt is exactly negatively correlated (F�;TC < 0)

with the policy target (in�ation) �t. When increasing the central bank�s preferences (�x)
for the relative cost of changing the output gap from zero to in�nity, the strictly negative
rule parameter F�;TC increases from minus in�nity to zero. There is one stable eigenvalue
and one unstable eigenvalue:

0 < � < 1 <
1

�
� �TC =

1� �F�;TC
�

< +1: (32)

The welfare loss of time-consistent policy vTC as a proportion of the limit maximal
value of the welfare loss with the largest volatility of in�ation (laissez-faire) vLF turns to
be equal to the ratio of in�ation under time-consistent policy to in�ation under laissez-
faire. It increases from zero to one when the cost of changing the policy instrument
increases from zero to in�nity:

0 <
vTC
vLF

=
N2
TC + �xF

2
u;TC

N2
=

�x (1� ��)2

�x (1� ��)2 + �2
=
NTC
N

=
�t;TC
�t;LF

< 1

4 Pre-test of Ramsey versus Time-Consistent Policy
and Optimal Simple Rule

4.1 A Bifurcation from negative-feedback to positive feedback
mechanism

This section adds two new results to Gali (2015) model.
Proposition 1: In Gali�s (2015) model, there is a saddle-node bifurcation when

shifting from negative-feedback of Ramsey optimal policy under commitment or quasi-
commitment to positive-feedback mechanism of in�nite horizon time-consistent, with op-
posite sign of the policy rule parameter responding to in�ation.
Proof: The reduced form in�ation rule parameters F�;TC of time-consistent policy

(respectively F�;R of Ramsey optimal policy) is an a¢ ne negative function of the in�ation
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eigenvalue �TC (respectively �R). The in�ation rule parameters satis�es the following
inequalities:

F�;TC = �
1

1� ��

�

�x
< 0 <

1� �

�
< F�;R =

1� ��R
�

<
1

�
(33)

The in�ation eigenvalues satis�es the following inequalities:

0 < �R =
1

2

�
1 +

1

�
+

�2

��x

�
�

s
1

4

�
1 +

1

�
+

�2

��x

�2
� 1

�
< 1 (34)

1 � 1

�
< �TC =

1� �F�;TC
�

=
1

�
+
1

�

1

1� ��

�2

�x
(35)

The shift from the stable eigenvalue of the in�ation equation (�R) for Ramsey opti-
mal policy to the unstable eigenvalue (�TC) larger than one for time-consistent policy is
a saddle-node bifurcation, because 0 < �R < 1 < �TC . The policy instrument is prede-
termined for Ramsey optimal policy whereas it is forward-looking with in�nite horizon
time-consistent policy. This implies an additional stable eigenvalue for Ramsey optimal
policy with respect to time-consistent policy (Blanchard and Kahn (1980)). The sta-
ble in�ation eigenvalue is related to negative-feedback policy rule parameter for Ramsey
optimal policy whereas the unstable in�ation eigenvalue is related to positive-feedback
policy rule parameter. QED.
These results are new because Gali (2015) only computes the strictly negative rule

parameter F�;TC for time-consistent policy, but not the positive rule parameter F�;R for
Ramsey optimal policy. Gali (2015) only computes the in�ation eigenvalue �R (denoted
� in his book) for Ramsey optimal policy but not �TC for time-consistent policy.
Figures 1 and 2: In�ation eigenvalues � and in�ation rule parameters F� function of

�x for Ramsey optimal policy (solid line) and time-consistent policy (dash line)

0 2 4 6 8 10
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Figure 1 plots the eigenvalue �TC of time-consistent policy (and respectively the eigen-
value �R of Ramsey optimal policy) as non-linear decreasing (respectively increasing)
function of the relative cost of changing the policy instrument �x for the estimated pa-
rameters � = 0:995, � = 0:340 for a given � = 0:99 of the Ramsey optimal policy
model during Volcker-Greenspan�s Fed starting 1979q3-2006q2 (see estimation section,
with estimated �R = 0:856 and �x = 4:552).
- For a near-zero cost of changing the policy instrument (the Fed is an in�ation

nutter), the in�ation eigenvalue �R tends to zero for Ramsey optimal policy and the
in�ation eigenvalue �TC tends to in�nity for time-consistent policy.
- For an in�nite cost of changing the policy instrument (the Fed has maximal inertia):
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the in�ation eigenvalue �R tends to one for Ramsey optimal policy and �TC tends to
1=� > 1 for time-consistent policy.
Figure 2 plots in�ation rule parameter F�;TC of time-consistent policy (and respec-

tively F�;R of Ramsey optimal policy) as non-linear decreasing (respectively increasing)
function of the relative cost of changing the policy instrument �x for the same estimated
parameters than for �gure 1 (with estimated F�;R = 0:447 and �x = 4:552).
- For a near-zero cost of changing the policy instrument, the in�ation rule parameter

F�;R tends to 1=� and F�;TC tends to minus in�nity for time-consistent policy.
- For an in�nite cost of changing the policy instrument, the in�ation rule parameter

F�;R tends to (1 � �)=� for Ramsey optimal policy and F�;TC tends to zero for time-
consistent policy.
Proposition 2: In Gali�s (2015) model:
(i) An optimal simple rule minimizing the central bank loss function is a reduced form

of time-consistent policy, with negative in�ation rule parameter F�;S < 0 corresponding
to a unique Central Bank preferences �x > 0 for a given discount factor � and a given
monetary policy transmission parameter �.
(ii) Simple rules with positive in�ation rule parameters F�;S 2

�
0; 1��

�

�
[
�
1+�
�
;+1

�
cannot be the reduced form of an optimal simple rule.
Proof:
Simple rule assumes that in�ation and the policy instrument are forward-looking

variables. Only the cost-push auto-regressive shock is a predetermined variable with
an exogenous stable eigenvalue �. Blanchard and Kahn�s (1980) determinacy condition
implies that the controllable eigenvalue, indexed by S for "simple rule": �S =

1��F�;S
�

should be unstable (j�Sj > 1). This implies that the in�ation rule parameter satis�es:
F�;S =

1���s
�

< 1��
�
or F�;S =

1���s
�

> 1+�
�
.

(i) For a given monetary policy transmission mechanism (�; �; �; �u), a simple rule with

a strictly negative in�ation parameter F�;S, forcing an unstable eigenvalue �S 2
i
1
�
;+1

h
by positive feedback, is the reduced form of time-consistent policy with a unique central
bank preference parameter �x given by:

F�;S = F�;TC = �
�

�x

1

1� ��
< 0 =) �x = �

�

F�;S

1

1� ��
(36)

(ii) The remaining cases of simple rules with positive rule parameter F�;S 2
�
0; 1��

�

�
[�

1+�
�
;+1

�
forcing an unstable eigenvalue �S 2

h
1; 1

�

h
[ ]�1;�1[ by positive feedback do

not minimize a central bank loss function in time-consistent policy. For F�;S 2
�
0; 1��

�

�
,

these simple rules imply a jump of in�ation larger than in laissez-faire (NS > N). For
F�;S 2

�
1+�
�
;+1

�
, these simple rules imply a jump of in�ation with an opposite sign

with respect to laissez-faire (NS < 0 < N). Those simple rules are sub-optimal because
they "overshoot" the initial anchor of in�ation with "too much e¤ort" of the central
bank. Kollmann (2002 and 2008) is a precursor for computing optimal simple rules with
new-Keynesian Phillips curve models. Q.E.D.
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4.2 Durbin (1970) Pre-Test of Time-consistent

4.2.1 Pre-test of time-consistent policy

Time-consistent policy is described by a permanent anchor of in�ation on the output
gap and by two AR(1) processes of in�ation and of the output gap. Variables, such
as in�ation (�t + ��) are not computed as deviations of equilibrium (already denoted
�t). Estimates of equilibrium values (��; x�) are then sample mean values found in the
estimates of intercepts. The reduced form time-consistent policy policy rule to be tested
(which corresponds to a permanent anchor of in�ation on the output gap) allows to
estimate the reduced form time-consistent policy rule parameter F�;TC :

xt + x� = F�;TC (�t + ��) + (x� � F�;TC�
�) + "x�;t with (37)

"x�;t = 0 for all dates, R2 = 1 and F�;TC < 0

The simple correlation between the output gap and in�ation provides another estimate
of the time-consistent policy rule parameter F�;TC = rx��";x=�";� < 0. It is equal to the
one found using the ratio of standard errors of residuals of the AR(1) estimations for
in�ation and for the output gap : F�;TC = ��";x=�";� only if the following condition
is satis�ed: rx� = �1. A preliminary test of time-consistent policy against Ramsey
optimal policy amounts to test the negative sign of correlation between the output gap
and in�ation, which is predicted to be perfect: rx� = �1 (stochastic singularity). Because
of test of a simple correlation exactly equal to �1 cannot be performed, we can perform
a one-sided test of a composite null hypothesis of a simple correlation very close to minus
one (subscript TC is for time-consistent policy):

Stochastic singularity (SS): H0;TC;SS : rx� < �0:99 (38)

Indeed, the rejection of stochastic singularity is expected due to measurement errors.
A test of statistical signi�cance with negative sign is less demanding. A positive sign
of the time-consistent rule leads to either sub-optimal simple rule or suggests Ramsey
optimal policy as an alternative:

Negative sign (NS): H0;TC;NS : rx� < 0 (39)

The acid test of time-consistent policy versus Ramsey optimal policy is a Durbin
(1970) test of the auto-correlation of residuals of the time-consistent positive-feedback
policy rule. The measurement errors of the time-consistent policy rule should not be
auto-correlated according to the theory of time-consistent policy. Else, the private sector
agents should take into account this additional predetermined forcing variable in their
decision, the way they do already account for the non-observable auto-correlation pa-
rameter of the cost-push shock. This would add another stable eigenvalue required for
determinacy. The time-consistent policy rule would be such that the policy instrument is
a function of the non-controllable auto-regressive cost-push shock and of this additional
non-observable auto-regressive forcing variable.

No unnoticed forcing variable: H0;TC;Durbin : �";x� = 0 for "x�;t = �";x�"x�;t+�t with �t i.i.d.
(40)

If measurement errors are correlated, this alternative hypothesis suggests that at
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least one lagged policy instrument are missing in the regression of the policy rule. This is
exactly a reduced form of the Ramsey optimal policy rule which also depends on in�ation.
Finally, we can perform another test. In the time-consistent feedback rule, the policy
instrument is a linear function of the policy target. The two AR(1) process for in�ation
and the output gap have common auto-correlation parameters:

�t + �� = � (�t�1 + ��) + (1� �)�� +NTC"u;t with "u;t i.i.d. (41)

xt + x� = � (xt�1 + x�) + (1� �)x� + F�;TCNTC"u;t with "u;t i.i.d. (42)

We can test the hypothesis of a common auto-correlation parameter for the policy
target (in�ation) and for the policy instrument (output gap):

Common auto-correlation (CA): H0;TC;CA : �� = �x (43)

Proposition 3: In Gali�s (2015) model, for time-consistent policy, only the auto-
correlation coe¢ cient of the cost-push shock � can be identi�ed. But the four other struc-
tural parameters are not identi�ed: the Fed�s preferences parameter �x, the slope of the
new-Keynesian Phillips curve �, the discount factor � and the variance of the cost-push
shock �2";u. If the Fed�s preferences is a welfare loss function, where Fed�s preferences pa-
rameter is endogenous (�x = �

"
), the representative household�s elasticity of substitution

between each di¤erentiated goods " is not identi�ed.
Proof. If common auto-correlation hypothesis is not rejected, the AR(1) estimates

of the policy target and of the policy instrument identify the auto-correlation parameter
of the non-observable cost-push shock: �. The ratio of the standard errors of residuals
of each AR(1) estimations of in�ation and output gap provides another estimate of the
time-consistent reduced form rule parameter F�;TC , (if rx� = 1), if the hypothesis of a
negative sign is not rejected:

F�;TC = ��";x=�";� (44)

The variance �2";� of perturbations of the in�ation AR(1) process is:

�2";� = N2
TC�

2
";u ) N2

TC =
�2";�
�2";u

(45)

The cross equations covariance �";�x between the residuals of both AR(1) process of
in�ation and of the output gap does not allow to identify either the private sector reduced
form parameter NTC anchoring in�ation on the cost-push shock or the variance of the
cost-push shock �2";u. The simple correlation between the two residuals is predicted to be
exactly negatively correlated (r";�x = �1):

�";�x = �
�";x
�";�

�2";�
�2";u

�2";u = ��";x�";� < 0: (46)

It is not possible to identify at least one of these four remaining structural parameters
separately, because the identi�ed parameter F�;TC does not depend only on one of these
four structural parameters:

F�;TC =
�1

1� ��

�

�x
< 0: (47)

Three identifying equations are missing in the case of time-consistent policy. QED.
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Finally, the tests of reduced form parameters of bivariate VAR(1) of time-consistent
policy versus Ramsey optimal policy are not feasible. The exact multicollinearity (ex-
act correlation) between regressors (current output gap and in�ation) imply a bivariate
VAR(1) with in�nite coe¢ cients with denominator including the term 1 � r2x� equal to
zero: �

xt+1
�t+1

�
=

�
+1 �1
�1 +1

��
xt
�t

�
+

�
NTC

F�;TCNTC

�
"t (48)

The time-consistent policy equilibrium predicts that out-of-equilibrium behavior cor-
responds to a non-stationary bivariate VAR including one unstable eigenvalue �TC and
one stable eigenvalue �, which cannot be estimated. By contrast, the stationary struc-
tural VAR(1) of output gap and in�ation with Ramsey optimal policy allows to identify
a larger number of structural parameters.�

xt+1
�t+1

�
=

�
a b
c d

��
xt
�t

�
+

�
Fu;R
0

�
"t

Two additional reduced form parameters (b; c) are available, because the stable sub-
space of the VAR process is of dimension two with Ramsey optimal policy instead of
dimension one with time-consistent policy.

5 Tests with Output Gap as Policy Instrument

5.1 Pre-test

The annualized quarter-on-quarter rate of in�ation and the congressional budget o¢ ce
(CBO) measure of the output gap are taken from Mavroeidis� (2010) online appendix
(detailed information at the end of this paper�s appendix). The pre-Volcker sample covers
the period 1960q1 to 1979q2 and the Volcker-Greenspan sample runs until 2006q2. The
period of Paul Volcker�s tenure is 1979q3 to 1987q2. The period of Alan Greenspan�s
tenure is 1987q3 to 2006q1.
According to Debortoli and Nunes (2015), a structural break corresponds to an new

initial anchor of forward in�ation on the output gap for Ramsey optimal policy with �nite
horizon. Clarida, Gali and Gertler (2000) and Mavroeidis (2010) consider the beginning
of Paul Volcker�s mandate 1979q3 as a structural break. Givens (2012) considers 1982q1
as a structural break, after 1981 fall of in�ation and before the 1982 recession. Matthes
(2015) estimation of the private sectors beliefs regarding central bank regimes also points
to 1982q1 as a structural break. Table 2 presents summary statistics before and after the
1979q3 and 1982q1 structural breaks.
Table 2: Summary statistics of in�ation and output gap

dates obs. mean min max after: obs. mean min max
�t < 79q3 78 4:39

(2:71)
0:59 11:79 � 79q3 108 3:18

(2:03)
0:64 10:93

xt < 79q3 78 0:47
(2:59)

�4:97 6:10 � 79q3 108 �1:11
(2:07)

�7:95 3:01

�t < 82q1 88 4:86
(2:90)

0:59 11:79 � 82q1 98 2:64
(1:08)

0:64 5:61

xt < 82q1 88 0:20
(2:59)

�4:97 6:10 � 79q3 98 �1:03
(2:12)

�7:95 3:01

Standard deviations are in parentheses.
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The mean of in�ation and of output gap are lower during Volcker-Greenspan than
before Volcker. Excluding the period 1979q3 to 1981q4, in particular the sharp disin�ation
which occurred during 1981 (�gure 3), the standard error of in�ation decreases by half
from 2.03 to 1.08 .
Table 3: Pre-tests of time-consistent policy rule
Dates obs rx� Low 95% r p R2x� F�;TC c �";x�
< 79q3 78 �0:13 �0:21 < 0:001 0:02 �0:13

(0:11)
1:03
(0:56)

0:92
(0:04)

< 82q1 108 �0:30 �0:42 < 0:001 0:09 �0:30
(0:09)

�0:14
(0:35)

0:91
(0:04)

� 79q3 88 �0:24 �0:31 < 0:001 0:06 �0:22
(0:09)

1:25
(0:53)

0:92
(0:05)

� 82q1 98 �0:40 �0:53 < 0:001 0:16 �0:78
(0:18)

1:03
(0:52)

0:89
(0:05)

The pre-tests of the null hypothesis of a quasi perfect negative correlation H0 : rx� <
�0:99 between observed in�ation and observed output gap are rejected. The test uses
Fisher�s Z transformation using the procedure corr with the software SAS. The threshold
of the composite null hypothesis �0:99 is far away from the 95% single tail con�dence
interval, where the lowest 95% con�dence limit reported in table 3 is at most equal to
�0:53 for the period beginning from 1982q1 (�gure 4). The opposite null hypothesis
H0 : r (xt; �t) = 0 is not rejected before 1979q3. time-consistent policy predicts a perfect
correlation for the anchor of in�ation expectations with the output gap. If the time-
consistent policy equilibrium occurred before 1979q3, we do not reject the null hypothesis
H0 : r (Et�1 (�t) ; �t) = 0 that the rational expectations of in�ation are orthogonal to
observed in�ation.
The pre-tests of the null hypothesis of the auto-correlation of residuals H0 : �";x� = 0

are strongly rejected, with a point estimate at least equal to 0:89 (�gure 5). These tests
gives a hint of model misspeci�cation. They suggest an omitted lagged policy instrument
in the policy rule. When it is included in Ramsey optimal policy rule, the R2 increases
from 16% (table 3, last line) to 93% (table 6, last line) beginning in 1982q1.
Table 4: Auto-correlation of in�ation and output gap
dates obs. var. r R2 � c �" �" DF PP
< 79q3 78 �t 0:86 0:74 0:88

(0:06)
0:62
(0:30)

1:38 �0:22
(0:12)

0:55 0:41

< 79q3 78 xt 0:93 0:86 0:93
(0:04)

0:03
(0:11)

0:99 0:26
(0:11)

0:20 0:33

< 82q1 88 �t 0:88 0:78 0:88
(0:05)

0:63
(0:28)

1:35 �0:19
(0:11)

0:34 0:23

< 82q1 88 xt 0:92 0:85 0:93
(0:04)

�0:03
(0:11)

1:03 0:23
(0:11)

0:27 0:37

� 79q3 108 �t 0:89 0:79 0:85
(0:04)

0:42
(0:16)

0:93 �0:27
(0:09)

0:04 0:01

� 79q3 108 xt 0:94 0:88 0:94
(0:03)

�0:07
(0:08)

0:70 0:34
(0:09)

0:11 0:25

� 82q1 98 �t 0:64 0:41 0:59
(0:07)

1:06
(0:21)

0:83 �0:20
(0:10)

0:00 0:00

� 82q1 98 xt 0:96 0:92 0:95
(0:03)

�0:02
(0:07)

0:60 0:35
(0:09)

0:07 0:35

Table 4 investigates the auto-correlation and unit roots of in�ation and output gap.
The output gap and in�ation are highly auto-correlated (respectively 0.93 and 0.86),
except when in�ation excludes the 1981 disin�ation for the period after 1981q4. For
the period 1982q1 to 2006q2, the in�ation auto-correlation coe¢ cient falls in the 95%
con�dence interval 0:6 � 0:14 and it is statistically di¤erent from the output gap auto-
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correlation coe¢ cient in the 95% con�dence interval 0:95 � 0:06 (�gures 4 and 5). As
the time-consistent policy equilibrium predicts that the auto-correlation of the output
gap and of in�ation should be the same, this is an additional test against time-consistent
policy, which holds for the period 1982q1 to 2006q2.
There is a negative auto-correlation of residuals �" for in�ation and a (statistically

signi�cant at the 5% level) positive auto-correlation of residuals for the output gap. The
column DF reports the p-value of the Dickey-Fuller test of unit root with one lag without
trend. The column PP reports the p-value of the Phillips-Perron test of unit root, which
takes into account auto-correlation, with one lag without trend. The null hypothesis of
a unit root is rejected for in�ation after 1979q2 and after 1981q4.

6 Tests of Ramsey Optimal Policy

Table 5 presents estimates of structural parameters, Table 5 report estimates of three
structural VAR estimations for (�; �R; F�;R),

�
�; �R;

�x
�

�
and (�; � (�) ; �x (�)) with two

given values for the discount factor � = 1 or � = 0:99 for the Volcker-Greenspan period.
With these three estimations, delta method is not necessary to compute the standard
errors of parameters in each case. Maximum likelihood did not converge for pre-Volcker
period (unconstrained VAR corresponds to complex conjugate eigenvalues, which are
excluded because of exogenous real auto-correlation of cost-push shock). Post 1982q1
estimations converged to unlikely estimates.
Table 5: Ramsey optimal policy structural parameters
Dates � �R F�;R

�x
�
= 1

"
� � (�) �x (�) Fu;R (�) �u (�)

� 79q3 0:995
(0:024)

� 0:857�
(0:054)

0:447
(0:292)

13:375�
(6:627)

1 0:321
(0:303)

4:296
(5:447)

�3:027 0:229

� 79q3 0:995�
(0:024)

0:857�
(0:054)

0:447
(0:292)

13:375�
(6:627)

0:99 0:340
(0:314)

4:552
(5:703)

�2:861 0:242

The cost-push shock faces is extremely persistent, close to a unit root, with � estimate
close to one. The ratio �x

�
is statistically signi�cant. If the Fed�s preferences are identical

to (welfare) household�s preferences), then �x
�
= 1

"
and b" = 0:07. The new-Keynesian

Phillips curve parameter � is relatively large. The Fed�s preference parameter �x is
relatively large (although not unheard of in previous estimations). for the period 1979-
2006.
Table 6: In�ation and output gap structural (S) versus unconstrained (U)

VAR
dates obs. var. S/U �t�1 xt�1 c �" R2 �
� 79q3 108 �t S 0:85 0:009 0:428

(0:16)
�0:25
(0:09)

0:793 0:857�
(0:054)

� 79q3 108 �t U 0:85
(0:04)

0:009
(0:04)

0:43
(0:16)

�0:25
(0:09)

0:79 0:85

� 79q3 108 xt S �0:064 0:999 0:198
(0:121)

0:29
(0:09)

0:888 0:995�
(0:024)

� 79q3 108 xt U �0:084
(0:03)

0:917
(0:03)

0:17
(0:11)

0:29
(0:09)

0:89 0:92

Table 6 compares the reduced form parameters of the VAR of Ramsey optimal pol-
icy with parameters of an unconstrained VAR. The in�ation equation of the VAR are
the same up to the third decimal of all statistics. There is no Granger causality from
output gap to in�ation. For the output gap equation, Ramsey optimal policy slightly
over-estimates the persistence of the output gap: its VAR auto-correlation parameter
shifts from 0:93 to 1. There is Granger causality from in�ation to output gap. For the
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output gap rule, the auto-correlation of residuals fell from 0:92 with time-consistent pol-
icy to 0:29 with Ramsey optimal policy, but it remains statistically signi�cant. As well,
the in�ation equation has a statistically signi�cant auto-correlation (�0:25).
The reduced form Ramsey optimal policy rule of the structural VAR is observationally

equivalent to the LQR �rst step representation including the non-observable cost-push
shock, when taking into account the other equations of the Hamiltonian system:

Ramsey : xt = 0:995xt�1 � 0:064�t�1 � 2:861"u;t or xt = 0:447�t � 2:861ut for � = 0:99
(49)

The policy instrument responds to two variables for Ramsey stable subspace of dimen-
sion two. The policy instrument responds to one variable in the time-consistent policy
stable subspace of dimension one. The reduced form policy rule for time-consistent policy
is:

Time-consistent: xt = �0:22�t (50)

7 Tests with Federal Funds Rate

7.1 Pre-test of time-consistent policy

Assuming the polar case where all labor cost is �nanced by working capital, the federal
funds rate is used here as a policy instrument. Figure 2 represents the time series of
in�ation and federal funds rate. Table 2 presents summary statistics before and after the
1979q3 and 1982q1 structural breaks.
Table 2B: Summary statistics of in�ation and federal funds rate

dates obs. mean min max after: obs. mean min max
�t < 79q3 78 4:39

(2:71)
0:59 11:79 � 79q3 108 3:18

(2:03)
0:64 10:93

it < 79q3 78 5:47
(2:42)

1:68 12:09 � 79q3 108 6:56
(3:76)

1:00 17:78

�t < 82q1 88 4:86
(2:90)

0:59 11:79 � 82q1 98 2:64
(1:08)

0:64 5:61

it < 82q1 88 6:84
(3:74)

1:68 17:78 � 79q3 98 5:76
(2:84)

1:00 14:51

Standard deviations are in parentheses below the mean.
The means of in�ation are lower after Volcker than before Volcker. Excluding the

period 1979q3 to 1981q4, in particular the sharp disin�ation which occurred during 1981
(�gure 3), the standard error of in�ation decreases by half from 2.03 to 1.08. The di¤er-
ence of means between the policy interest rate and in�ation increased after Volcker.
Table 3B: Pre-test of time-consistent policy rule
dates obs ri� t ri� = 0 : p R2i� F�;D c �";i�
< 79q3 78 0:83 12:85 < 0:001 0:68 0:74

(2:22)
2:22
(0:30)

0:61
(0:09)

< 82q1 88 0:79 11:83 < 0:001 0:62 1:01
(0:08)

1:55
(0:48)

0:73
(0:08)

� 79q3 108 0:75 11:63 < 0:001 0:56 1:39
(0:12)

1:39
(0:11)

0:76
(0:06)

� 82q1 98 0:53 6:08 < 0:001 0:28 1:39
(0:22)

2:09
(0:65)

0:80
(0:06)

The tests of the null hypothesis of a quasi perfect negative correlationH0 : ri� < �0:99
between in�ation and federal funds rate have been replaced by the usual tests of the null
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hypothesis: H0 : ri� = 0, because ri� > 0. The negative sign of the time-consistent policy
rule is rejected, with large t statistics. The Durbin and Breusch-Godfrey tests strongly
reject the lack of serial correlation (for one or two lags) with p-value below 10�4. Tests
of the null hypothesis of the �rst order auto-correlation of residuals H0 : �";i� = 0 are
rejected, with a point estimate at least equal to 0:60 and at most 0:80. The in�nite
horizon time-consistent positive-feedback mechanism does not �t the data when the cost
of capital is taken into account into the monetary transmission mechanism. Finally, the
Taylor principle (an in�ation coe¢ cient F� larger than one) is not satis�ed before Volcker
and satis�ed after Volcker.
Table 4B investigates the auto-correlation of in�ation and federal funds rate. In�ation

and Federal funds rate are highly auto-correlated (respectively 0.93 and 0.86), except for
the period 1982q1 to 2006q2, the in�ation auto-correlation coe¢ cient falls in the 95%
con�dence interval 0:6 � 0:14 and it is statistically di¤erent from the federal funds rate
auto-correlation coe¢ cient in the 95% con�dence interval 0:95 � 0:02. In�nite horizon
time-consistent policy predict that the auto-correlation should be the same, which is not
the case after 1982q1.
Table 4B. Auto-correlation of in�ation and federal funds rate
dates obs. var. r R2 � c �" �" DF PP
< 79q3 78 �t 0:86 0:74 0:88

(0:06)
0:62
(0:30)

1:38 �0:22
(0:12)

0:55 0:41

< 79q3 78 it 0:93 0:87 0:95
(0:04)

0:33
(0:25)

0:89 0:43
(0:10)

0:17 0:54

< 82q1 88 �t 0:88 0:78 0:88
(0:05)

0:63
(0:28)

1:35 �0:19
(0:11)

0:34 0:23

< 82q1 88 it 0:94 0:89 0:96
(0:04)

0:36
(0:27)

1:26 0:21
(0:11)

0:42 0:65

� 79q3 108 �t 0:89 0:79 0:85
(0:04)

0:42
(0:16)

0:93 �0:27
(0:09)

0:04 0:01

� 79q3 108 it 0:94 0:92 0:96
(0:03)

0:23
(0:20)

1:05 0:15
(0:09)

0:38 0:44

� 82q1 98 �t 0:64 0:41 0:59
(0:07)

1:06
(0:21)

0:83 �0:20
(0:10)

0:00 0:00

� 82q1 98 it 0:96 0:95 0:94
(0:02)

0:26
(0:14)

0:63 0:45
(0:09)

0:18 0:08

There is a negative auto-correlation of residuals �" for in�ation and a positive auto-
correlation of residuals for federal funds rate. The column DF reports the p-value of the
Dickey-Fuller test of unit root with one lag without trend. The column PP reports the
p-value of the Phillips-Perron test of unit root, which takes into account auto-correlation,
with one lag without trend. The null hypothesis of a unit root is rejected at the 5%
threshold for in�ation after 1979q2 and after 1981q4. It is rejected for federal funds rate
at the 10% level after 1981q4 only for the Phillips-Perron test.

7.2 Tests of Ramsey optimal policy

Table 5B reports estimates using four structural VAR estimations for (�; �C ; F�;C), for�
�; �C ;

�i
�

�
and for (�; � (�) ; �i (�)) with the identi�cation restrictions for the discount

factor � = 1 or � = 0:99. We check that point estimates satisfy the theoretical constraints
of Ramsey optimal policy. When the federal funds rate is the policy instrument, the
estimations only converged to plausible values for the pre-Volcker period, before 1979q3.
Table 5B: Ramsey optimal policy structural parameters
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Dates � �R F�;R
�i
�

� � (�) �i (�) Fu;C (�) �u (�)
< 79q3 0:550�

(0:092)
0:947�
(0:047)

0:873�
(0:131)

20:83
(18:268)

1 0:060
(0:06)

1:24�
(0:34)

�1: 822 0:483

< 79q3 0:550�
(0:092)

- - - 0:99 0:071
(0:06)

1:47�
(0:36)

�1: 802 0:489

Estimates of structural parameters are plausible values. The Fed�s preference para-
meter �i and the reduced form rule parameter F�;R are signi�cantly di¤erent from zero
at the 5% level, as well as the reduced form rule parameter F�;C . The new-Keynesian
Phillips curve parameter � is not signi�cantly di¤erent from zero at the 5% level.
Table 6B shows that the reduced form parameters of the structural VAR(1) (rows S)

are identical to the unconstrained VAR(1) estimates (rows U) up to the third decimal.
Table 6B: In�ation and federal funds rate structural (S) versus uncon-

strained (U) VAR
dates obs. var. S/U �t�1 it�1 c �" R2 �R2 �
< 79q3 77 �t S 0:521 0:488 �0:471

(0:340)
�0:12
(0:16)

0:804 0:06 0:550�
(0:092)

< 79q3 77 �t U 0:52
(0:09)

0:49
(0:10)

�0:471
(0:343)

�0:12
(0:16)

0:804 0:06 0:550

< 79q3 77 it S �0:025 0:976 0:316
(0:226)

0:55
(0:12)

0:869 0:01 0:947�
(0:047)

< 79q3 77 it U �0:025
(0:065)

0:976
(0:07)

0:317
(0:252)

0:55
(0:12)

0:869 0:01 0:947

(1) For the in�ation equation, there is Granger causality from lagged federal funds
rate to in�ation. The exogenous cost-push shock auto-correlation is close to the auto-
correlation of in�ation in the VAR. The residuals are not auto-correlated controlling for
endogenous lagged in�ation and federal funds according to Durbin�s test. The autocorre-
lation estimate is �0:12, It not statistically di¤erent from zero (Durbin�s test: t = �0:77,
p = 0:44).
(2) For the federal funds rate rule equation, the auto-correlation 0:976 is relatively

close to a unit root. The endogenous stable eigenvalue corresponds to the auto-correlation
of the federal funds rate. There is no Granger causality from lagged in�ation to the federal
funds rate. The residuals are auto-correlated controlling for endogenous lagged in�ation
and federal funds according to Durbin�s test. The autocorrelation estimate is 0:55. It is
statistically di¤erent from zero (Durbin�s test: t = 4:66, p = 0:000). For the residuals
of both equations of the VAR, the joint LM test reject the null of no auto-correlation of
order one of the residuals. It does not reject the null of no auto-correlation of order two
of the residuals. This suggests a lag of order two is missing for rule of the federal funds
rate. We explore this issue in the next section.

8 Pre-test with Consumption Euler Equation

Following Gianonni and Woodford (2003) and Kara (2007), the monetary transmission
mechanism includes the consumption Euler equation including a forcing auto-regressive
variable. In the representative household�s intertemporal substitution (IS) consumption
Euler equation, current output gap xt is positively correlated with expected output gap
and negatively correlated xt with real rate of interest, equal to the nominal rate it minus
expected in�ation Et�t+1. The intertemporal elasticity of substitution (IES)  = 1=� is
a measure of the responsiveness of the growth rate of consumption to the interest rate,
usually considered to be smaller than one. It is the inverse or the relative degree of resis-
tance to intertemporal substitution of consumption (RISC) of � (the relative �uctuation

23



aversion), which measure the strength of the preference for smoothing consumption over
time, usually considered to be larger than one.

xt = Etxt+1 �  (it � Et�t+1) + zx;t where  > 0 (51)

A non-controllable exogenous stationary and predetermined variable zx;t is auto-
regressive of order one (0 < j�z;xj < 1) where "g;t are zero-mean, normally, independently
and identically distributed additive disturbances. Initial values of predetermined forcing
variable are given.

zx;t = �z;xzx;t�1 + "x;t where "x;t is i.i.d. N
�
0; s2x

�
, zx;0 given, (52)

The policy maker minimizes the expectation of the expected discounted present value
of a discounted quadratic loss function over a �nite horizon of duration T � 3. The
weight on in�ation is normalized to one, the weight on output gap is �x � 0 and the
weight on the policy instrument (the federal funds rate) is �i > 0.

� Et

TX
t=0

�t
�
�2t
2
+ �x

x2t
2
+ �i

i2t
2

�
; T � 3 (53)

subject to the private sector�s new-Keynesian Phillips curve and the consumption
Euler equation, with initial conditions for predetermined state variables and natural
boundary conditions for private sector�s forward variables. In this model, shifting from
time-consistent policy and optimal simple rule to Ramsey optimal policy is a Hopf bifur-
cation (Chatelain and Ralf (2017)).
Gianonni and Woodford (2003) and Kara (2007) found a reduced form for Ramsey

optimal policy which depends on four predetermined variables, including two lags of the
federal funds rate (table 7, row 1).
Time-consistent reduced form policy rule has identi�ed representations that depends

only on two variables, because the number of predetermined variables is equal to two (the
two auto-regressive shocks). Four representations of the time-consistent rule depending
only on two variables and on disturbances corresponding to white-noise measurement
errors are estimated (table 7, rows 2 to 5). Only the rule which depends on two lags of
the federal funds rate pass the Durbin test (the auto-correlation of measurement errors is
not statistically di¤erent from zero). The three other representations of time-consistent
policy rule are also predicted to have zero auto�correlation of disturbances, but they do
not pass the Durbin test.
Table 7: Durbin test on Ramsey (R) versus time-consistent (TC) reduced

form Taylor rules
dates obs. var. R/TC it�1 it�2 �t�1 xt�1 c �" R2 R2R �R2TC
< 79q3 76 it R 1:17

(0:12)
�0:43
(0:11)

0:16
(0:07)

0:12
(0:04)

0:69
(0:23)

0:11
(0:11)

0:910 �

< 79q3 76 it TC � � 0:74
(0:06)

0:38
(0:06)

2:11
(0:29)

0:49
(0:10)

0:732 0:178

< 79q3 76 it TC 1:38
(0:10)

�0:47
(0:10)

� � 0:54
(0:23)

0:12
(0:12)

0:896 0:014

< 79q3 76 it TC 0:976
(0:08)

� �0:025
(0:07)

� 0:32
(0:25)

0:42
(0:11)

0:869 0:041

< 79q3 76 it TC 0:928
(0:04)

� � 0:13
(0:04)

0:41
(0:23)

0:37
(0:11)

0:888 0:022

With habit persistence parameter and in�ation indexation parameter, two additional
predetermined variables (lagged output and lagged in�ation) are taken into account for
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both policies. Time-consistent policy shifts to four predetermined variables and Ram-
sey optimal policy shifts to six predetermined variables. Then, the reduced form pol-
icy rule including four variables in table 7 corresponds to time-consistent policy. Even
before checking exact parameter identi�cation issues, time-consistent policy with habit
persistence and in�ation indexation is less parsimonious with respect to the number of
parameters than Ramsey optimal policy without habit persistence and without in�ation
indexation: it includes two more free parameters.

9 Conclusion

Using closed form solutions of Ramsey optimal policy and time-consistent policy from
Gali (2015) model, we take exactly into account the identi�cation restrictions related to
the dimension of the stable subspace of each policy. Ramsey optimal policy with quasi-
commitment has a comparative advantage with respect to in�nite horizon time-consistent
policy and optimal simple rules for modelling persistence with fewer parameters. Durbin
tests allows to test Ramsey optimal policy with respect to time consistent policy.
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9.1 Appendix 1: Augmented Discounted Linear Quadratic Reg-
ulator

The new-Keynesian Phillips curve can be written as a function of the Lagrange multiplier:

�t = �Et [�t+1] + �
�

�x
t+1 + u�;t where � > 0, 0 < � < 1

It can be written:

Et [�t+1] +
�2

��x
t+1 =

1

�
�t �

1

�
u�;t where � > 0, 0 < � < 1

The solution of the Hamiltonian system are based on the demonstrations of the aug-
mented discounted linear quadratic regulator in Anderson, Hansen, McGrattan and Sar-
gent [1996], following the steps in Chatelain and Ralf (2017c):

La

0@ �t+1
t+1
ut+1

1A = Na

0@ �t
t
ut

1A
where

La =

0@ 1 �2

��x
0

0 1 0
0 0 1

1A ;Na =

0@ 1
�

0 �1
�

�1 1 0
0 0 �

1A
As La is non singular:

(La)�1Na =Ma =

0@ 1
�
+ �2

��x
� �2

��x
� 1
�

�1 1 0
0 0 �

1A =

0@ 1
�a
� 1 1 + 1

�
� 1

�a
� 1
�

�1 1 0
0 0 �

1A
where Gali (2015) denotes a = a (�; �; �x) =

�x
�x(1+�)+�2

= 1

1+�+ �2

�x

. The characteristic

polynomial of matrixMa:

(X � �)

�
X2 � 1

�a
X +

1

�

�
= 0

Matrix Ma has two stable roots with bounded discounted quadratic loss function

(below
q

1
�
): � and �R =

1�
p
1�4�a2
2�a

(�R is denoted � in Gali (2015)) and one unstable
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root �U =
1+
p
1�4�a2
2�a

because the determinant of the matrix Ma is ��R�U = �
q

1
�

q
1
�

and �R <
q

1
�
imply �U =

1+
p
1�4�a2
2�a

= 1
��R

>
q

1
�
.

�R (�; �; �x) =
1

2

0@1 + 1
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1 +
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�2
� 4
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@�R
@�x

> 0, lim
�x!0

�R = 0 and lim
�x!+1

�R = 1 <
1p
�

Identi�cation of �
�x
: The ratio �

�x
is identi�ed using the following two equalities

de�ning the in�ation rule parameter F�;R, which are found for the characteristic polyno-
mial equal to zero:

F�;R =
1� ��R

�
=

�
�R

1� �R

�
�

�x
)

0 = ��R �
�
1 + � +

�2

�x

�
�R + 1

Positive sign restriction of F�;R: The eigenvalue �R is a linear decreasing function
of the in�ation rule parameter F�;R. It varies between zero (for the relative cost of
changing the interest rate tending to zero: �x ! 0) and the inverse � of the laissez-
faire eigenvalue 1

�
(for the relative cost of changing the interest rate tending to in�nity:

�x ! +1). This sets boundaries restrictions of the in�ation rule parameter F�;R, which
is strictly positive (see appendix):

F�;R =
1

�
� �

�
�R =

�
�R

1� �R

�
�

�x
2
�
1� �2

�
;
1

�

�
: (54)

Ricatti equation solution: P� is the slope of eigenvectors of the stable eigenvalue
�R of the matrix H of the Hamiltonian system when u0 = 0 = ut

�
1
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��x
� �2

��x

�1 1
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1 1
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1� 1
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The stable eigenvalue �R is the stable solution of the characteristic polynomial of the

hamiltonian matrix H:

�R =
1

2

0@ 1
�
+

�2

��x
+ 1�

s�
1

�
+

�2

��x
+ 1

�2
� 4

�

1A
The slope P� of eigenvectors of the stable eigenvalue �R is given by:
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P� =
�R � a11
a12
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a21
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P� is also the positive solution of a scalar Ricatti equation (demonstration using

undetermined coe¢ cients in proposition 1):
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Proposition 1: Rule parameters Fu and Pu of the cost-push shock ut satisfy:

Pu
P�
=

��R
1� �R��

=
� 1
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1
��R

� �
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Fu
F�
= �1 + ��Pu
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(55)
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1� �R
and Fu =
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1� �R

�
�
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and the optimal initial anchor of in�ation on the cost-push shock is:

�0

�
�R
+
; �
�

�
=
�Pu
P�

u0 =

1
�

1
��R

� �
u0 =

��x
�

x0 with � < 1 <
1

�
<

1

��R
= �U (57)

Demonstration: It uses the method of undetermined coe¢ cients of Anderson, Hansen,
McGrattan and Sargent�s (1996), section 5, on Gali�s (2015) Ramsey optimal policy. Us-
ing the in�nite horizon transversality conditions, the solution is the one that stabilizes
the state-costate vector for any initialization of in�ation �0 and of the exogenous shock
u0 in a stable subspace of dimension two within a space of dimension three (�t; t; ut) of
the Hamiltonian system. We seek a characterization of the Lagrange multiplier t of the
form:

t = P��t + Puut:

To deduce the control law associated with matrix (P�; Pu), we substitute it into the
Hamiltonian system:
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If we write the three equations in this system separately,
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P��t+1 + Puut+1 = (P� � 1)�t + Puut
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Substitute the last equation into the �rst and solve for �t+1:
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It is straightforward to verify that:
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The policy instrument evolves in the stable subspace of the Hamiltonian. We seek a
characterization of the policy rule of the form:

xt = F��t + Fuut:

The evolution equation of in�ation can be rewritten with a feedback rule as:

�t+1 =

�
1

�
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�t +

�
� 1
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where F� is given by:
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(58)

where Fu is given by (demonstration (1) below):

Fu
F�
= �1 + ��Pu

P�

where Pu
P�
is given by (demonstration (2) below):

Pu
P�
=

��R
1� �R��

so that Fu is given by:

Fu
F�
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1� ���R
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Demonstration (1) is:
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:

For demonstration (2), substitute the auto-regressive equation of the forcing variable
ut into the law of motion of the Lagrange multiplier remaining in stable subspace and
solve for P��t+1:

P��t+1 + Puut+1 = (P� � 1)�t + Puut

P��t+1 = (P� � 1)�t + (Pu � �Pu)ut

The coe¢ cient on ut is Pu��Pu. To obtain an alternative formula for this coe¢ cient,
premultiply the evolution equation for in�ation including the feedback rule by 1

�
P�:
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Using both formulas of the feedback rule, we rewrite the coe¢ cient on ut. First:

�
1

�
� �

�
F�

��
P�
�1
�
+ Pu�

�
=
1

�
P�
�1
�
+
1

�
Pu��

�

�

�
�x�

P�

1 + �2

�x�
P�

�
P�
�1
�
+ Pu�

�

=
1

�
P�

 
�1
�
� �

�

�
�x�

(�P� + Pu��)

1 + �2

�x�
P�

!
+
1

�
Pu�

Hence:

1

�
P�

�
� 1
�
� �

�
Fu

�
=

�
1� �F�

�

��
P�
�1
�
+ Pu�

�
� 1

�
Pu�

That is:

� 1
�
� �

�
Fu = �R

�

P�

�
P�
�1
�
+ Pu�

�
� �

P�

Pu
�
�

That is:
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Equating coe¢ cients on ut in the two equations results in a scalar Sylvester equation:
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Q.E.D.

9.2 Appendix 2: A representation of the optimal policy rule
function of the non-observable AR(1) cost-push shock.

Gali (2015) stationary equilibrium process for the output gap and the cost-push shock,
using basis vectors (ut; xt):

ut = �ut�1 + "u;t (59)

xt = �Rxt�1 �
�R

1� ���R

�

�x
ut (60)

corresponds to a change of basis vectors (ut; xt) of the ADLQR representation:�
ut
xt

�
= N�1

�
ut
�t

�
with N�1 =

�
1 0

Fu;R F�;R

�
implying Gali (2015) observationally and mathematically equivalent third representa-

tion of the VAR(1) of Ramsey optimal policy:
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�0 = ��x
�
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with Gali (2015) representation of the Ramsey optimal policy rule as the second line
of the VAR(1). The output gap rule depends on its lagged value and on the lagged value
of the cost-push shock ut:

N�1 (A+BF)N=

�
� 0

� �R
1����R

�
�x
� �R

�
for t = 1; 2; 3::: where the two stable eigenvalues of the stable subspace � and �R are

invariant to changes of basis vectors. This is obtained with intermediate computations:
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9.3 Appendix 3: Identi�cation issue for reduced form including
a non-observable AR(1) shock.

Because the auto-correlation of the policy instrument xt and the auto-correlation of the
cost-push shock are competing to explain the persistence of the policy instrument xt, this
partial adjustment model with serially correlated shocks has a problem of identi�cation
and multiple equilibria (Griliches (1967), Blinder (1986), McManus et al. (1994), Fève,
Matheron Poilly (2007)). This VAR(1) can be written as:

xt = �Rxt�1 + �t and �t = ��t�1 + "�;t

where �t = � �
�x

�R
(1��R��)ut. It is an AR(2) model of the policy instrument rule:

xt = �Rxt�1 + � (xt�1 � �Rxt�2) + "�;t

xt = b1xt�1 + b2xt�2 + "�;t with b1 = �R + � and b2 = ��R�:

The structural parameter � and the semi-structural parameter �R are functions of
reduced form parameters b1 and b2 solutions of:

X2 � b1X � b2 = 0
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which are given by:

�R =
b1 �

p
b21 + 4b2
2

and � = �b� �R

where � = b21 + 4b2 = (�� �R)
2. If � 6= 0 and � 6= �R, two sets of values for �R and

� are observationally equivalent. The �rst solution is such that �R > � and the second
solution is such that �R < �. The larger �, the larger the identi�cation issue, because
it increases the gap between a more inertial monetary policy with lower correlation of
monetary policy shocks and a less inertial monetary policy, that we cannot distinguish.
The ADLQR representation and Gali (2015) representation of the stationary solution of
the VAR(1) of optimal policy are not useful to identify parameters, because they include
the cost-push shock ut which is not observable.
The reduced form estimated variance �� provides another equation with a theoret-

ical positive sign restriction �
�x

�R
(1��R��) > 0 for �ve unknowns structural parameters

(�x; �; �; �; �u):

�

�x

�R
(1� �R��)

�u = ��

9.4 Appendix 4: Oudiz and Sachs (1985) vs Gali (2015) time
consistent policy

Substituting the private sector�s in�ation rule (8) and policy rule (9) in the in�ation law
of motion (1) and comparing it with the forcing variable law of motion (2) leads to the
following relation between NTC on date t, NTC;t+1 and Fu;TC :

�t = �Et [�t+1] + �xt + ut )
NTCut = �NTC;t+1�ut + �Fu;TCut + ut

NTC = ��NTC;t+1 + �Fu;TC + 1

A myopic central bank does not notice that NTC;t+1 = NTC (Gali (2015)) in its
optimization:

NTC;Gali = ��NTC;t+1 + �Fu;TC + 1 )
@NTC;Gali

@Fu;TC
= �

F�;TC =
Fu;TC
NTC

= � �

�x
< 0

This �rst order condition of the central bank optimization is substituted into the new-
Keynesian Phillips curve equation, where, only at this stage, players of the game discover
that it is assumed NTC;t+1 = NTC;t = NTC . Gali�s (2015) solutions are:

Fu;TC;Gali = �
�

�2 + �x (1� ��)
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�x
NTC

NTC;Gali =
�x

�2 + �x (1� ��)
! 1

1� ��
= N when �x ! +1
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In time-consistent equilibrium (Oudiz and Sachs (1985)), the central bank does fore-
sees thatNTC;t+1 = NTC in its optimization, with the following solutions, that we consider
for the remaining part of the paper:

NTC =
�Fu;TC + 1

1� ��
=
�F�;TCNTC + 1

1� ��
) @Nu;TC
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=

�
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1

1� ��
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< 0
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�

�2 + �x (1� ��)2

NTC =
�x (1� ��)

�2 + �x (1� ��)2
! 1

1� ��
= N when �x ! +1

In Oudiz and Sachs�(1985) general solution, this is the condition after substitutions
of the private sector�s rule (matrix NTC) and the policy maker�s rule (matrix Fu;TC) for
both dates t and t+ 1 into the law of motion of the private sector dynamics:

NTC;t = J �KFu;TC

J = (A22 +NTC;t+1A12)
�1 (NTC;t+1A11 + A21)

K = (A22 +NTC;t+1A12)
�1 (NTC;t+1B1 +B2)

with general notations and equalities with Gali�s (2015) transmission mechanism:�
ut+1
�t+1

�
=

�
A11 = � A12 = 0
A21 = � 1

�
A22 =

1
�

��
ut
�t

�
+

�
B1 = 0
B2 = ��

�

�
xt

In Oudiz and Sachs (1985), NTC;t+1 = NTC;t at all dates, whereas Gali (2015) assumes
myopia (or NTC;t+1 = 0) for the policy maker. This assumption changes the initial jump
of in�ation, impulse response functions of in�ation and the output gap and welfare. It
does not change the identi�cation problem of discretion raised in this paper, because the
stable subspace of discretion have the same dimension (one) using the reference Oudiz
and Sachs (1985) discretion equilibrium or Gali (2015) and Clarida, Gali, Gertler (1999)
myopia assumption.

9.5 Appendix 5: De�nition of data variables

Mavroeidis data are running from 1960-Q1 to 2006-Q2.
In�ation is annualized quarter-on-quarter rate of in�ation, 400 * LN( GDPDEF/

GDPDEF(-1)) with GDPDEF: Gross Domestic Product Implicit Price De�ator, 2000=100,
Seasonally Adjusted. Released in August 2006. Source: U.S. Department of Commerce,
Bureau of Economic Analysis.
GAPCBO is the output gap measure: 100 * LN(GDPC1/GDPPOT) with GDPC1:

Real Gross Domestic Product, Billions of Chained 2000 Dollars, Seasonally Adjusted
Annual Rate, Released in August 2006. Source: U.S. Department of Commerce, Bureau
of Economic Analysis and GDPPOT: Real Potential Gross Domestic Product, Billions of
Chained 2000 Dollars. Source: U.S. Congress, Congressional Budget O¢ ce.
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Federal Funds Rate : Averages of Daily Figures - Percent, Source: Board of Governors
of the Federal Reserve System
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Figure 3: Time series of inflation, output gap (gapcbo), federal funds rate (fyff), Volcker’s 1979q3 and 1982q1 

   
Figure 4: Time-consistent rule null hypothesis: perfect negative correlation (all dots should be on a regression line with 

negative slope). Output gap rule r=-0.11 (t=-1.51), Working capital Federal funds rate rule r=0.66>0 (t=11.9). 

 
Figure 5: Time-consistent rule null hypothesis: zero serial correlation of residuals (horizontal regression line) is rejected 

for both rule. Output gap rule: r=0.92 (t=24.5). Federal funds rate rule r=0.61 (t=6.7). 

 
Figures 6: Time-consistent null hypothesis: identical slopes (auto-correlation) of inflation (r=0.64) and of output gap 

(r=0.958) or federal funds rate (r=0.974) is rejected for 1982q1 to 2006q2. 
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